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Abstract To build a multiscale mechanism based phar-

macokinetic–pharmacodynamic (PK/PD) model for anti-

body drug conjugates (ADCs), using brentuximab-vedotin

as an example, for preclinical to clinical translation of

ADC efficacy. Brentuximab-vedotin experimental data,

collected from diverse publications, were employed in the

following steps to build and validate the model: (1) char-

acterization of ADC and payload PK at the cellular level,

(2) characterization of payload PK in plasma and tumor

tissue of xenograft mouse, (3) characterization of ADC PK

in mouse plasma, (4) prediction of the tumor payload

concentrations in xenograft mouse by integrating parame-

ters obtained from steps 1–3 with the novel tumor dispo-

sition model for ADC, (5) characterization of preclinical

brentuximab-vedotin tumor growth inhibition data using

the novel PK/PD model, (6) characterization of ADC and

payload PK in cancer patients, and (7) prediction of clinical

responses of brentuximab-vedotin using the PK/PD model,

by integrating PK parameters obtained from step 6, and

translated mouse parameters from step 5; and comparing

them with clinical trial results. The tumor disposition

model was able to accurately predict xenograft tumor and

plasma payload concentrations. PK/PD model predicted

progression free survival rates and complete response rates

for brentuximab-vedotin in patients were comparable to the

observed clinical results. It is essential to understand and

characterize the disposition of ADC and payload, at the

cellular and physiological level, to predict the clinical

outcome of ADC. A first of its kind mechanistic model has

been developed for ADCs, which can integrate preclinical

biomeasures and PK/PD data, to predict clinical response.

Keywords Antibody drug conjugate �Clinical translation �
Mechanistic mathematical model � Pharmacokinetics–

pharmacodynamics � Brentuximab-vedotin � SGN-35

Introduction

Antibody drug conjugates (ADC) are an upcoming anti-

cancer modality which exploit the targeting capabilities of

antibodies and potent cytotoxicity of chemicals (payload)

to achieve an enhanced therapeutic index [1]. An ADC has

three components: (i) antibody, responsible for the tumor

specific localization of the ADC (ii) linker, responsible for

specifically releasing the payload inside the tumor cell, and

(iii) payload, responsible for killing the tumor cell [2].

Considering there are three different components respon-

sible for the tumor targeting of ADCs, and delivery of their

payload to the cancer cells, it becomes imperative to

understand and characterize the biodisposition of each of

these three components to achieve an optimized drug with

maximum therapeutic potential. However, it is difficult to

fully comprehend and integrate the complex, nonlinear,

and many times unintuitive processes involved in the cel-

lular and physiological disposition of ADCs and their

components, without the use of a multiscale, mechanism

based mathematical model. Aside from characterizing the

underlying system, properly developed PK/PD models are
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also capable of guiding the dose regimen optimization, and

translating preclinical data to the clinic [3]. In order to

accomplish such a comprehensive mathematical model for

ADCs, we are presenting for the first time a multiscale

mechanism based PK/PD model, not only characterizing

the biodisposition of ADC and payload at the cellular and

physiological level, but also capable of providing transla-

tion of preclinical efficacy data to the clinic.

The model has been developed in a step-by-step manner

using literature derived experimental and clinical data for

brentuximab-vedotin (cAC10-vc-MMAE, SGN-35), which

is being marketed for the treatment of Hodgkin’s lym-

phoma (HL) and anaplastic large cell lymphoma (ALCL).

Brentuximab-vedotin consists of an anti-CD30 antibody

(cAC10) attached to potent tubulin polymerization inhib-

iting payload Monomethyl Auristatin E (MMAE), via a

protease-sensitive dipeptide linker valine-citrulline (vc),

using the conventional thiol based conjugation method [4].

The linker is specifically designed to release MMAE by

lysosomal cathepsin-B cleavage in target cancer cells,

while maintaining stable linkage in the systemic circulation

[5]. The first step of the model building process includes

validation of literature derived CD30? cell biomeasures

[6] (e.g. receptor numbers, binding affinity, internalization

rate), and cellular PK parameters of brentuximab-vedotin

and MMAE, by comparing predictions from a mass bal-

ance model with the results from published in vitro

experiment. In the second step, a PK model for MMAE is

developed by its fitting to plasma and tumor PK in a

xenograft mouse, obtained after systemic MMAE admin-

istration. The next step involves developing a model to

characterize the plasma PK of brentuximab-vedotin in

mouse, and characterization of the average drug antibody

ratio (DAR) versus time profile for brentuximab-vedotin in

mouse. The fourth step integrates all the parameter values

obtained from the first three steps using a novel and clin-

ically translatable tumor disposition model, to predict

tumor MMAE, unconjugated plasma MMAE, and conju-

gated plasma MMAE concentrations in a xenograft mouse,

after systemic brentuximab-vedotin administration. Effi-

cacy of brentuximab-vedotin in two different xenograft

mouse models is characterized in the fifth step, where the

predicted tumor concentrations of MMAE are correlated

with tumor volumes using a semi-mechanistic model [7], to

estimate the PD parameters associated with the drug. In the

sixth step, PK profiles of brentuximab-vedotin and MMAE

in cancer patients, obtained from two different clinical

trials employing different dosing regimen, were charac-

terized to obtain clinical PK parameters for both the mol-

ecules. Lastly, the final step deals with the preclinical to

clinical translation of brentuximab-vedotin efficacy.

Literature derived clinical tumor growth rates, CD30

receptor numbers, and clinical PK parameters for bren-

tuximab-vedotin and MMAE are substituted in the

preclinical PK-PD model. The model is then used to sim-

ulate clinical trials and predict objective response rates

(ORR) and progression free survival rates (PFS) of patients

treated with two different dosing regimen for brentuximab-

vedotin. Results from simulated clinical trials are compared

with the observed clinical trial results, to validate the pre-

clinical to clinical translation ability of the proposed model.

Model development

Modeling the PK of brentuximab-vedotin and MMAE

at cellular level (step-1)

In order to characterize the fate of brentuximab-vedotin

and MMAE at a cellular level, a simple mass balance

model was developed to mimic incubation of brentuximab-

vedotin in an in vitro cell culture system, equations for

which are shown below:

dADCExtra Cellular

dt
¼� kon

ADC
Antigen � ADCExtra Cellular

� AgTotal � ADC AgBoundð Þ
þ koff

ADC
Antigen � ADC AgBound;

IC ¼ ADC0
Extra Cellular ð1Þ

dADC AgBound

dt
¼kon

ADC
Antigen � ADCExtra Cellular

� AgTotal � ADC AgBoundð Þ
� koff

ADC
Antigen � DC AgBound � kintAg

� ADC AgBound; IC ¼ 0 ð2Þ

dPLIntra Cellular

dt
¼ kintAg

� ADC AgBound � DAR� koutPL

� PLIntra Cellular; IC ¼ 0 ð3Þ

dPLExtra Cellular

dt
¼ koutPL

� PLIntra Cellular; IC ¼ 0 ð4Þ

where ADCExtra Cellular is concentration of extracellular ADC,

ADC AgBound is concentration of tumor antigen bound ADC

on cell surface, PLIntra Cellular is concentration of intracellular

payload, and PLExtra Cellular is concentration of extracellular

payload. Due to the lack of sufficient information to estimate

relevant parameters at this early in vitro stage, it was assumed

that the ADC is stable in the cell culture medium [8], and there

is a negligible uptake of released unconjugated payload from

media to the cell. Please refer to the glossary in Table 1 for

detailed explanation of all the symbols used in aforemen-

tioned and all other equations in this manuscript.
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Table 1 A glossary of the terms used in model equations

Symbol Definition Unit

ADCExtra Cellular Brentuximab-vedotin concentration in cell culture media nM

kon
ADC
Antigen; koff

ADC
Antigen

Association, and dissociation, rate constants between brentuximab-vedotin and CD30 1/nM/day,

1/day

AgTotal; ADC AgBound Total CD30, and brentuximab-vedotin bound CD30, concentrations nM

PLIntra Cellular ; PLExtra Cellular MMAE concentrations inside the cells, and in the cell culture media nM

kintAg
Internalization rate of CD30 inside the cell 1/day

koutPL
Efflux rate of MMAE from the cell 1/day

DAR Drug antibody ratio i.e. #payload(s)/antibody Unitless

X1PL; X2PL Amount of MMAE in central, and peripheral, compartment Nanomole

CLPL; CLDPL Plasma clearance, and distribution clearance, of MMAE L/day/Kg

V1PL; V2PL MMAE volume of distribution for central, and peripheral, compartment L/Kg

PPL; DPL The rate of permeability, and diffusion, of MMAE across the tumor blood vessels lm/day,

cm2/day

RCap; RKrogh Radius of tumor blood capillary, and an average distance between two capillaries lm

ePL Tumor void volume for MMAE Unitless

RTumor Radius of the tumor cm

PLTumor
Intra Cellular ; PLTumor

Extra Cellular MMAE concentration inside tumor cells, and in tumor extracellular space nM

kintPL
MMAE nonspecific uptake rate in cancer cell 1/day

kon
PL
Tubulin; koff

PL
Tubulin Association, and dissociation, rate constants between MMAE and unknown cell

component

1/nM/day,

1/day

TubulinTotal Total concentration of MMAE binding intracellular component nM

PLBound
Tubulin

Concentration of MMAE bound inside the cell nM

kdis Dissociation rate of MMAE from brentuximab-vedotin 1/day

X1ADC ; X2ADC Amount of brentuximab-vedotin in central, and peripheral, compartment Nanomole

CLADC ; CLDADC Plasma clearance, and distribution clearance, of brentuximab-vedotin L/day/Kg

V1ADC ; V2ADC Brentuximab-vedotin volume of distribution for central, and peripheral, compartment L/Kg

PADC ; DADC The rate of permeability, and diffusion, of brentuximab-vedotin across the tumor

blood vessels

lm/day,

cm2/day

eADC Tumor void volume for brentuximab-vedotin Unitless

ADCFree
Tumor ExtraCellular ; ADCBound

Tumor ExtraCellular
Free, and CD30 bound, brentuximab-vedotin concentrations in tumor extracellular

space

nM

C1PL; C2PL Concentrations of MMAE in central, and peripheral, compartment nM

V1; V2; V3; V4 Tumor volume in the growth, and three transduction, compartment mm3

V1Initial; TV ; VMax Initial tumor volume, Total tumor volume, and maximum possible tumor volume mm3

kgExponenial
; kgLinear

; xkgExponenial
; xkgLinear

Exponential and linear growth rates for tumor, and inter-individual variability

associated with them

1/day,

mm3/

day

kkillMax
; xkkillMax

Maximum killing rate constant and inter-individual variability associated with it 1/day

KC50; xKC50 MMAE concentrations at which the killing rate constant is half of its maximum

value, and inter-individual variability associated with it

nM

PLTumor Tumor payload concentration responsible for the cytotoxicity nM

Tau; xTau Transduction time between two tumor compartments, and inter-individual variability

associated with it

day

w A switch function between exponential and linear growth rates of the tumor Unitless

ADC0
Extra Cellular

ADC concentration in the cell culture media at time = 0 nM

DosePL Dosing amount of payload Nanomole

DAR0 Drug antibody ratio for the ADC at time = 0 Unitless

DoseADC Dosing amount of ADC Nanomole
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In order to validate the aforementioned model, an in vitro

experiment from literature, using brentuximab-vedotin as an

ADC and two different CD30? cell lines (L540cy & Kar-

pas299) as experimental systems, was simulated and the

results from the simulated experiment were compared with

experimental results from Okeley et al. [8]. It was assumed

that during the experimental time frame cell killing by the

ADC is offset by cell proliferation, and total antigen con-

centration remains the same. The relevant outputs for com-

parison were calculated by assuming 5 9 105 cancer cells/ml

(L540cy or Karpas299), and a single cell volume of one

picoliter. Parameters pertaining to brentuximab-vedotin, for

incorporation in the model, were obtained or derived from

various publications and are provided in Table 2.

Modeling the PK of MMAE in the plasma and tumor

of xenograft mouse (step-2)

A PK model was then developed to characterize the dis-

position of MMAE at the tissue level. Literature derived

plasma and tumor PK of MMAE, after systemic adminis-

tration of 0.04 mg/kg MMAE in a mouse xenograft model

[9], were fitted by the following model equations:

dX1PL

dt
¼� CLPL

V1PL
� X1PL �

CLDPL

V1PL
� X1PL þ

CLDPL

V2PL

� X2PL �
2 � PPL � RCap

RKrogh
2

� ePL �
X1PL

V1PL
� PLTumor

Extra Cellular

� �
� TV

� 6 � DPL

RTumor
2
� ePL �

X1PL

V1PL
� PLTumor

Extra Cellular

� �

� TV ; IC ¼ DosePL ð5Þ

dX2PL

dt
¼ CLDPL

V1PL
� X1PL �

CLDPL

V2PL
� X2PL; IC ¼ 0 ð6Þ

dPLTumor
Extra Cellular

dt
¼ 2 � PPL � RCap

RKrogh
2

� ePL �
X1PL

V1PL
� PLTumor

Extra Cellular

� �

þ 6 � DPL

RTumor
2
� ePL �

X1PL

V1PL
� PLTumor

Extra Cellular

� �

� kintPL
� PLTumor

Extra Cellular þ koutPL

� PLTumor
Intra Cellular; IC ¼ 0 ð7Þ

dPLTumor
Intra Cellular

dt
¼ kintPL

�PLTumor
Extra Cellular� koutPL

�PLTumor
Intra Cellular� kon

PL
Tubulin

�PLTumor
Intra Cellular � TubulinTotal�PLBound

Tubulin

� �
þ koff

PL
Tubulin �PLBound

Tubulin; IC¼ 0 ð8Þ

dPLBound
Tubulin

dt
¼ kon

PL
Tubulin � PLTumor

Intra Cellular

� TubulinTotal � PLBound
Tubulin

� �
� koff

PL
Tubulin

� PLBound
Tubulin; IC

¼ 0 ð9Þ

Above, the PK of MMAE in the central and peripheral

(except tumor) compartment is described by a simple two

compartment model (Eqs. 5 and 6). And, the tumor PK of

MMAE is described by a more sophisticated tumor dispo-

sition model (Eq. 7), which is an adapted version of a

published, clinically translatable tumor disposition model

[10–12]. Rather than estimating the tumor distribution

parameters for MMAE, the model uses established drug

molecular weight and tumor size dependent parameters to

drive MMAE from plasma to the tumor extracellular space

and vice versa. The model also accounts for entry and exit

of payload in the cancer cell, as well as binding of payload

to a target in the cell, in a mechanistic manner (Eqs. 8 and

9). Please refer to Table 2 for the parameter values used in

the model.

Modeling the PK of brentuximab-vedotin in mouse

plasma (step-3)

Plasma PK of brentuximab-vedotin after systemic admin-

istration in mouse was characterized by fitting the plasma

concentration versus time profiles of brentuximab-vedotin,

obtained from two different publications [5, 13], with a two

compartment model with linear elimination from the cen-

tral compartment. In addition, stability of the vc linker in

mouse plasma was characterized by fitting the literature

derived average DAR versus time profile of brentuximab-

vedotin [5] to the following exponential decline equation:

dDAR

dt
¼ �kdis � DAR; IC ¼ DAR0 ð10Þ

where kdis is the first order dissociation rate of MMAE from

cAC10. Of note, multiple payloads are conjugated on

antibody at different locations, and depending on the site of

conjugation a payload may have different in vivo stability/

residence time on the antibody. Thus, average DAR profile

changes with time, and in order to accurately determined

umber of payload conjugated to antibody at a given point

of time, it is important to well characterize the average

DAR versus the time profile for an ADC.

Predicting tumor payload concentrations (step-4)

As the payload concentration in the tumor is the driving

force for the efficacy of an ADC, and represents the con-

centration of active ingredient at the site of action, it is of

paramount importance for a PK/PD model to accurately
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Table 2 Literature derived or estimated parameter values used in the PK/PD model

Parameter Value Unit Source

Step-1

AgTotal 0.49 (L540cy), 0.24 (Karpas299) nM Calculated from [8]

kon
ADC
Antigen

6.22 1/nM/day Assumed from [36]

koff
ADC
Antigen

12.5 1/day Based on Kd of 2 nM

kintAg
0.61 1/day Derived from [37]

DAR 4.4 Unitless From [8]

koutPL
1.1 (L540cy), 0.68 (Karpas299) 1/day Derived from [8]

Step-2

CLPL 18.4 L/day/Kg Estimated

V1PL 0.136 L/Kg Estimated

CLDPL 1.84 L/day/Kg Estimated

V2PL 0.523 L/Kg Estimated

PPL 2.1E ? 04 lm/day http://tumormodel.org

RCap 8 lm From [10]

RKrogh 75 lm From [10]

ePL 0.44 Unitless http://tumormodel.org

DPL 0.25 cm2/day http://tumormodel.org

RTumor Dynamic cm Derived from tumor volume

kintPL
9.66 1/day Estimated

koutPL
1.1 (L540cy), 0.68 (Karpas299) 1/day Derived from [8]

kon
PL
Tubulin 0.44 1/nM/day Based on Kd of 30 nM

koff
PL
Tubulin

13.1 1/day Assumed

TubulinTotal 65 nM Estimated

Step-3

CLADC 0.006 L/day/Kg Estimated

V1ADC 0.046 L/Kg Estimated

CLDADC 0.13 L/day/Kg Estimated

V2ADC 0.06 L/Kg Estimated

kdis 0.12 1/day Derived from [5]

Step-4

PADC 334 lm/day http://tumormodel.org

DADC 0.022 cm2/day http://tumormodel.org

eADC 0.24 Unitless http://tumormodel.org

AgTotal 976 (L540cy), 483 (Karpas299) nM Calculated

Step-5

kgExponenial
0.245 (L540cy), 0.278 (Karpas299) 1/day Estimated

kgLinear
43.3 (L540cy), 87.3 (Karpas299) mm3/day Estimated

VMax 5000 mm3 Estimated

w 20 Unitless Fixed based on [17]

kkillMax
0.761 (L540cy), 0.753 (Karpas299) 1/day Estimated

KC50 254 (L540cy), 172 (Karpas299) nM Estimated

Tau 0.128 (L540cy), 0.0114 (Karpas299) day Estimated

xkgExponenial
39.9 (L540cy), 27.3 (Karpas299) % Estimated

xkgLinear
64.9 (L540cy), 65.2 (Karpas299) % Estimated

xkkillMax
20.9 (L540cy), 28.5 (Karpas299) % Estimated

xKC50 25.4 (L540cy), 44.1 (Karpas299) % Estimated

xTau 164 (L540cy), 23.9 (Karpas299) % Estimated
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predict this concentration. To achieve that, a two step

process was undertaken where a novel, clinically translat-

able, tumor disposition model for ADC was developed,

which was subsequently evaluated against the published

literature data for brentuximab-vedotin. Figure 1 displays a

diagram of the integrated multiscale PK/PD model for the

ADC. In the model, after systemic administration of

brentuximab-vedotin in the central compartment it is either

allowed to distribute to the peripheral compartment using

parameters obtained in step-3 (modeling the PK of bren-

tuximab-vedotin in mouse plasma), or distribute to the

tumor extracellular compartment using the parameters

calculated based on the drug molecular weight and tumor

size [10–12]. The free payload, either generated in the

systemic circulation via nonspecific shedding from ADC or

via metabolism of ADC, and generated in the tumor, was

characterized using the plasma and tumor specific PK

model developed for MMAE in step-2 (modeling the PK of

MMAE in the plasma and tumor of xenograft mouse).

Once in the tumor extracellular environment, cellular dis-

position of brentuximab-vedotin and MMAE is character-

ized using the parameters and model developed based on

the in vitro system described in step-1 (modeling the PK of

brentuximab-vedotin and MMAE at cellular level). In order

to validate the results from this ADC tumor disposition model,

MMAE concentrations in tumor, free MMAE concentrations

in plasma, and conjugated MMAE concentrations in plasma

were simulated in L540cy xenograft bearing mouse after an

intravenous 2 mg/kg dose of brentuximab-vedotin. The pre-

dicted results were compared with experimental data from the

literature [9, 14]. Equations for the integrated ADC tumor

disposition model are provided below:

dX1ADC

dt
¼ �CLADC

V1ADC
� X1ADC �

CLDADC

V1ADC
� X1ADC

þ CLDADC

V2ADC
� X2ADC �

2 � PADC � RCap

RKrogh
2

� eADC �
X1ADC

V1ADC
� ADCFree

Tumor ExtraCellular

� �
� TV

� 6 � DADC

RTumor
2

� eADC �
X1ADC

V1ADC
� ADCFree

Tumor ExtraCellular

� �

� TV ; IC

¼ DoseADC ð11Þ

dX2ADC

dt
¼ CLDADC

V1ADC
� X1ADC �

CLDADC

V2ADC
� X2ADC; IC ¼ 0

ð12Þ

dADCFree
Tumor ExtraCellular

dt
¼ 2 � PADC � RCap

RKrogh
2

� eADC �
X1ADC

V1ADC
� ADCFree

Tumor ExtraCellular

� �
þ 6 � DADC

RTumor
2

� eADC �
X1ADC

V1ADC
� ADCFree

Tumor ExtraCellular

� �
� kon

ADC
Antigen

� ADCFree
Tumor ExtraCellular � AgTotal � ADCBound

Tumor ExtraCellular

� �
þ koff

ADC
Antigen � ADCBound

Tumor ExtraCellular; IC ¼ 0 ð13Þ

Table 2 continued

Parameter Value Unit Source

Step-6

CLADC 0.025 L/day/Kg Estimated

V1ADC 0.054 L/Kg Estimated

CLDADC 0.036 L/day/Kg Estimated

V2ADC 0.1 L/Kg Estimated

kdis 0.072 1/day Derived from [5]

CLPL 0.93 L/day/Kg Estimated

V1PL 1.26 L/Kg Estimated

CLDPL 3.03 L/day/Kg Estimated

V2PL 0.799 L/Kg Estimated

Step-7

AgTotal 166 nM Calculated from [21]

kgExponenial
0.035 1/day Derived from [22]

kgLinear
220 mm3/day Derived from [22]

VMax 5.24E?05 mm3 Assumed

V1Initial 4.19E?03 mm3 Based on [20]
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dADCBound
Tumor ExtraCellular

dt
¼kon

ADC
Antigen � ADCFree

Tumor ExtraCellular

� AgTotal � ADCBound
Tumor ExtraCellular

� �
� koff

ADC
Antigen � ADCBound

Tumor ExtraCellular

� kintAg
� ADCBound

Tumor ExtraCellular; IC ¼ 0

ð14Þ

dPLTumor
Intra Cellular

dt
¼kintAg

� ADCBound
Tumor ExtraCellular

�DARþ kintPL
� PLTumor

Extra Cellular � koutPL

� PLTumor
Intra Cellular � kon

PL
Tubulin � PLTumor

Intra Cellular

� TubulinTotal � PLBound
Tubulin

� �
þ koff

PL
Tubulin

� PLBound
Tubulin; IC ¼ 0 ð15Þ

dPLBound
Tubulin

dt
¼ kon

PL
Tubulin � PLTumor

Intra Cellular

� TubulinTotal � PLBound
Tubulin

� �
� koff

PL
Tubulin

� PLBound
Tubulin; IC

¼ 0 ð16Þ

dPLTumor
Extra Cellular

dt
¼ 2 � PPL � RCap

RKrogh
2

� ePL � C1PL � PLTumor
Extra Cellular

� �
þ 6 �DPL

RTumor
2
� ePL � C1PL � PLTumor

Extra Cellular

� �
� kintPL

� PLTumor
Extra Cellular þ koutPL

� PLTumor
Intra Cellular þDAR

� kdis � ADCFree
Tumor ExtraCellular

�
þ ADCBound

Tumor ExtraCellular

�
; IC ¼ 0 ð17Þ

dC1PL

dt
¼�CLPL

V1PL
�C1PL�

CLDPL

V1PL
�C1PLþ

CLDPL

V2PL
�C2PL

� 2 �PPL �RCap

RKrogh
2
� ePL �C1PL�PLTumor

Extra Cellular

� �

� TV � 6 �DPL

RTumor
2
� ePL �C1PL�PLTumor

Extra Cellular

� �
� TV

þX1ADC �DAR �Kdis

V1PL
þ

CLADC �DAR � X1ADC

V1ADC

V1PL
;

IC ¼ 0 ð18Þ

dC2PL

dt
¼ CLDPL

V1PL
� C1PL �

CLDPL

V2PL
� C2PL; IC ¼ 0 ð19Þ

Equations 11 and 12 describe the plasma PK of ADC,

and Eqs. 13 and 14 describe the tumor PK of ADC.

Equations 15–17 describe the tumor PK of payload, and

Eqs. 18 and 19 describe the plasma PK of payload. Since

the released payload for brentuximab-vedotin (i.e. MMAE)

demonstrates bystander effects, total tumor payload

concentration (calculated as the sum of PLTumor
Intra Cellular;

PLBound
Tubulin and PLTumor

Extra Cellular) was used to drive the efficacy

instead of just using the intercellular payload concentration.

Modeling the preclinical efficacy

of brentuximab-vedotin (step-5)

In order to quantify the PD parameters for brentuximab-

vedotin, tumor growth inhibition (TGI) data from two

different xenograft (L540cy and Karpas299) bearing

mouse models, treated with various doses of brentuximab-

vedotin, were obtained from the literature [9, 13, 15, 16].

The TGI data were subsequently modeled using the pop-

ulation PK/PD model, where the tumor PK of brentux-

imab-vedotin and MMAE were described using the model

built in step-4 (predicting tumor payload concentrations),

and the PD was modeled using an adapted cell distribution

model [7, 17, 18]. Equations for the PD model are pro-

vided below:

dV1

dt
¼

kgExponenial
� 1� TV

VMax

� �
� V1

1þ kgExponenial

kgLinear
� TV

� �w
� �1=w

� kkillMax
� PLTumor

KC50þ PLTumor

� V1; IC

¼ V1Initial ð20Þ

dV2

dt
¼ kkillMax

� PLTumor

KC50þ PLTumor
� V1� V2

Tau
; IC ¼ 0 ð21Þ

dV3

dt
¼ V2� V3ð Þ

Tau
; IC ¼ 0 ð22Þ

dV4

dt
¼ V3� V4ð Þ

Tau
; IC ¼ 0 ð23Þ

TV ¼ V1þ V2þ V3þ V4 ð24Þ

Equation 20 describe the growth and payload induced

killing phenomenon for the tumor. Equations 21–23 describes

the non-growing fraction of tumor that is destined for death.

And, Eq. 24 describes the total tumor volume. The tumor is

allowed to grow initially in an exponential manner with

switches to a linear growth rate as the size of the tumor

increases. Once the tumor cells are exposed to the payload,

they are shuttled to a non-growing transduction compartment,

from where these cells are destined to die with a rate

determined by the transduction parameter Tau. The killing

rate of the tumor is described as a nonlinear function of total

released payload concentration inside the tumor. All the TGI
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data for brentuximab-vedotin from a given xenograft model

were fitted simultaneously to Eqs. 20–24 to estimate the PD

parameter and inter-individual variability associated with

them.

Modeling the PK of brentuximab-vedotin and MMAE

in the plasma of cancer patients (step-6)

Clinical PK of brentuximab-vedotin and MMAE from two

different clinical trials, employing two different dosing

regimens, was obtained from the literature [19, 20]. Both

trials had PK data from a multiple dosing study for several

doses. A simple two compartmental model with linear

elimination from the central compartment was used to

characterize the PK of brentuximab-vedotin and MMAE.

Any nonspecifically shed MMAE from brentuximab-

vedotin, or MMAE generated from the eliminated bren-

tuximab-vedotin, was introduced back into the central

compartment of the MMAE model, as shown in Eq. 18.

The dissociation rate (kdis) of MMAE from brentuximab-

vedotin in human plasma was assumed to be the same as in

monkey, which was obtained from literature [5].

Preclinical to clinical translation of the ADC PK/PD

model (step-7)

The integrated PK/PD model, described in steps 4 and 5,

was used to perform clinical trial simulations for brentux-

imab-vedotin. However, to enable preclinical to clinical

translation the following changes were made to the model

parameters: (a) The number of CD30 receptors on cancer

cells were changed to the value obtained from a cancer

patient [21], (b) The growth rate of the tumor was set to

match clinically observed values [22], (c) clinical PK

parameters for brentuximab-vedotin and MMAE were

adopted from step-6 (modeling the PK of brentuximab-

vedotin and MMAE in the plasma of cancer patients) esti-

mates, and (d) the initial tumor burden and maximum

possible tumor burden were set to clinically observed/

plausible values [20]. The rest of the parameter values,

including the inter-individual variability in PD parameters,

were kept the same as in the preclinical case. Please refer to

Table 2 for the parameter values.

In order to evaluate the predictive performance of the

translated parameters and the ADC PK/PD model, two

Fig. 1 The PK/PD Model. A schematic diagram of the proposed PK/

PD model for ADC is shown. PK: After administration of ADC into

the systemic circulation, the ADC can distribute to the peripheral

compartment, be eliminated, or distribute to the tumor compartment.

Once inside the tumor extracellular matrix, the ADC is either allowed

to interact with the cell surface antigen or allowed to diffuse back to

the systemic circulation. The surface bound ADC is allowed to

internalize into the cancer cell, where it is assumed to be degraded.

Each molecule of degraded ADC is assumed to generate certain

molecules of payload in the cell, equivalent to the DAR of the ADC at

the given time. The free payload in the cell is allowed to bind to the

target or allowed to exit to the extracellular matrix. In the

extracellular space the free payload can also be generated from its

dissociation to free or bound ADC. Free payload from tumor

extracellular matrix is allowed to exchange between the plasma and

tumor in a similar manner as ADC, or allowed to go back in the tumor

cells. Once inside the systemic circulation, the payload is allowed to

distribute to the peripheral compartment, be eliminated, or distribute

back to the tumor compartment. PD: Please refer to ‘‘Modeling the

preclinical efficacy of brentuximab-vedotin (step-5)’’ sub-section in

‘‘Model development’’ section for more detail about the PD model
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different clinical trials for brentuximab-vedotin were sim-

ulated using the parametric simulation method [23]. In each

trial 1,000 patients were simulated for each dose. One trial

explored a once every 3 week dosing regimen for seven

cycles (0.1–2.7 mg/kg) [19], and the other explored a once a

week dosing regimen for 3 week followed by a 1 week gap

for two cycles (0.4–1.4 mg/kg) [20, 24]. From each simu-

lated clinical trial, the PFS and response rates were calcu-

lated and compared with the results from actual clinical

trials [19, 20, 24], to evaluate the predictability and pre-

clinical to clinical translation ability of the proposed

mechanistic PK/PD model for ADCs. The PFS rates were

calculated periodically using the following schedule: every

week for the first 42 days, then onwards every 2 weeks up

to 210 days, then every month up to 360 days, and every

2 months for the rest of the period. A spherical shape was

assumed for the tumor, and the diameter of the tumor was

calculated from the tumor volume, using the volumetric

equation for the spherical shape. The criteria to categorize

response rates for progressive disease, stable disease (SD),

partial regression (PR), and complete regression (CR) were:

more than 20 % increase in tumor diameter, less than 30 %

reduction in tumor diameter, more than 30 % decrease in

tumor diameter but still detectable, and below the detection

limit of 0.5 cm tumor diameter, according to the Revised

Response Criteria for Malignant Lymphoma [25].

Data collection and model implementation

All the datasets used for model development and validation

were digitized from the literature (using the software ‘Grab

It! XP’). Models were fitted to the data using the maximum

likelihood (ML) estimation method in the ADAPT-5 soft-

ware (BMSR, CA) [26] with the combined (propor-

tional ? additive) variance model. All the simulations

were performed using the software Berkeley Madonna

(University of California at Berkeley, CA).

Results

Modeling the PK of brentuximab-vedotin and MMAE

at cellular level (step-1)

Intracellular and extracellular MMAE concentration versus

time profiles were simulated mimicking incubation of

200 ng/ml (1.33 nM) brentuximab-vedotin with 5 9 105

L540cy or Karpas299 cells/ml. Simulated profiles for

L540cy or Karpas299 cell lines were compared with the

observed results from in vitro experiments conducted by

Okeley et al. [8] in Fig. 2a and b, respectively. In general, the

model predicted concentration versus time profiles of intra-

cellular and extracellular MMAE, for both cell lines, rea-

sonably well. Consistent with experimental results, the

model predicted that intracellular MMAE concentrations

would be more than 100 times MMAE concentration in

media. Simulated intracellular MMAE concentrations were

slightly lower than observed concentration, suggesting a

possible binding site for MMAE inside the cell, which was

not considered in the in vitro model (Eqs. 1–4). Extracellular

MMAE concentrations were under predicted at earlier time

points, suggesting a possible contribution of MMAE shed

from brentuximab-vedotin, which was not considered in the

model due to the assumption of ADC stability in the cell

culture media.

Modeling the PK of MMAE in the plasma and tumor

of xenograft mouse (step-2)

Figure 3a and b shows model fits to observed data for MMAE

concentration versus time profiles in the plasma and

tumor of L540cy xenograft mouse, after a bolus dose of

0.04 mg/kg MMAE. The model was able to characterize

both the profiles well with reasonable confidence in the

parameter estimates, which are shown in Table 2 and

Supplementary Table 1. Of note, as hypothesized in the

analysis of step-1 (modeling the PK of brentuximab-ve-

dotin and MMAE at cellular level) results, incorporation of

intracellular tubulin binding was necessary to characterize

tumor MMAE concentrations.

Modeling the PK of brentuximab-vedotin in mouse

plasma (step-3)

Brentuximab-vedotin plasma PK in mouse, obtained from

two different publications [5, 13], was well characterized

with a two compartment model (Fig. 3c). Model estimates

are provided in Table 2. Exponential decay also well

characterized the average DAR versus time profile for

brentuximab-vedotin in mouse, with the dissociation half life

of MMAE *6 days.

Predicting tumor payload concentrations (step-4)

Figure 3d shows simulated MMAE concentrations in

tumor, free MMAE concentrations in plasma, and conju-

gated MMAE concentrations in plasma of L540cy xeno-

graft bearing mouse superimposed over experimental

results from literature [9]. As evident in the figure, the

model predicted reasonably well all the profiles using a

predefined set of parameters, without estimating any

parameters, thus providing confidence in the ability of the
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novel ADC tumor disposition model to predict payload

concentration at the site of action.

Modeling the preclinical efficacy

of brentuximab-vedotin (step-5)

Figure 4a, b show the fitting of TGI data, from different

doses and dosing regimens, for L540cy and Karpas299

bearing xenografts using the proposed PK/PD model. All

the data for a given cell line was fitted simultaneously using

a population model, and the parameter estimates are pro-

vided in Table 2. The model was able to characterize the

data well, providing a set of PD parameters for preclinical to

clinical translation of brentuximab-vedotin efficacy.

Modeling the PK of brentuximab-vedotin and MMAE

in the plasma of cancer patients (step-6)

The two compartment model was able to characterize

the multiple dose clinical PK of brentuximab-vedotin

and MMAE reasonably well (Fig. 5). Table 2 provides

the estimates for brentuximab-vedotin and MMAE

clinical PK, which were utilized for clinical trial

simulations.

Fig. 2 Cellular level PK of brentuximab-vedotin and MMAE.

Extracellular and intracellular concentrations of MMAE were simu-

lated after incubating 200 ng/ml (1.33 nM) of brentuximab-vedotin

with 5 9 105 L540cy or Karpas299 cells/ml. The simulated profiles

were compared with the observed data from literature, which

followed the same experimental protocol. a Upper panel: solid line
represents simulated total cell associated MMAE concentrations and

dotted line represents simulated intracellular MMAE concentrations

in L540cy cells, represented as pmoles of MMAE per million cells.

Solid circles represent total and open circles represent intracellular

observed concentrations. Middle panel: solid line represents simu-

lated and solid circles represent observed intracellular MMAE

concentrations in L540cy cells (in nM). Lower panel: solid line
represents simulated and solid circles represent observed extracellular

MMAE concentrations in media containing L540cy cells (in nM).

b Data description in panel B is similar to panel A, except the cell line

being used is Karpas299 instead
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Preclinical to clinical translation of the ADC PK/PD

model (step-7)

Considering most of the patients, in both the clinical trials

evaluated, were Hodgkin’s lymphoma patients, preclinical

PD values from Hodgkin-derived L540cy cell line xeno-

grafts were used to simulate the clinical trials. The first

clinical trial was simulated using the regimen one dose

given every 3 weeks (Q3W), for seven dosing cycles at

eight dosages, to mimic the treatment in the published

clinical trial [19]. Figure 6a compares the simulated and

observed PFS for Q3W trial, demonstrating that the sim-

ulated results were very close to the PFS rates observed in

the actual clinical trial. Figure 6b provides the simulated

changes in response rates with the dose for the Q3W reg-

imen. Good agreement was seen between the simulated and

the observed [19] ‘percentage of patients with CR versus

dose’ profiles (Fig. 6c).

The second clinical trial was simulated using a per cycle

regimen of one dose each week (QW) three times followed

by a gap of 1 week, for two cycles and six doses, to mimic

the treatment in the published clinical trial [24]. Figure 6d

provides the comparison for the simulated PFS versus

observed for the QW trial, demonstrating that for this trial

as well the results from simulated clinical trial were very

close to the survival rates observed in the actual clinical

trial. Simulated changes in response rates with dose for the

QW regimen are provided in Fig. 6e. Figure 6f provides

the comparison of simulated ‘percentage of patients with

CR versus dose’ profile to the observed one [24], demon-

strating a reasonable agreement between them except for

the middle two doses of 0.8 and 1.0 mg/kg.

Discussion

For small or large molecule anti-cancer drugs, bench to

bedside translation of efficacy has been challenging.

Despite the use of established in vitro and preclinical

experimental systems to create confidence in the translation

of the drug, and the use of mathematical models to predict

clinical efficacy of the drug by integrating/interpreting

these data, success rates for oncology clinical trials are

unacceptably low [27, 28]. One of the main reasons for the

aforementioned scenario is a poor appreciation of PK/PD

[29], and the use of empirical approaches and mathematical

Fig. 3 Plasma and tumor PK of MMAE and brentuximab-vedotin.

a Observed (solid circles) and model fitted (solid line) plasma MMAE

concentration versus time profile after injecting 0.04 mg/kg MMAE

in tumor bearing mouse. b Observed (solid circles) and model fitted

(solid line) tumor MMAE concentration versus time profile after

injecting 0.04 mg/kg MMAE in tumor bearing mouse. c Observed

(solid and open circles represents data from two different publica-

tions) and model fitted (solid line) plasma brentuximab-vedotin

concentration versus time profile after injecting 10 mg/kg brentux-

imab-vedotin in mouse. d Solid line represents model simulated and

solid circles represent observed tumor MMAE concentrations, dashed
line represents model simulated and the gray circles represent

observed free plasma MMAE concentrations, dotted line represents

model simulated and open circles represent observed total plasma

MMAE concentrations, in a tumor bearing mouse, which was injected

with 2 mg/kg of brentuximab-vedotin
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models with mechanistically unidentifiable parameters

(which are mainly suitable just for describing the data and

interpolation), to integrate preclinical data and predict/

extrapolate the clinical efficacy of drug [30]. This leads to

fewer successful bench to bedside translation predictions,

and diminished confidence in the importance of in vitro

(cell culture) and preclinical (xenograft) experimental

systems. Thus, for a novel anti-cancer modality like ADC,

which contains both a small and a large molecule, it can be

presumed that traditional empirical models may not be

ideal to integrate in vitro and preclinical experimental

systems with the intent of predicting clinical efficacy.

We describe a step-by-step approach to develop a

mechanistically detailed and modality specific platform

mathematical model for ADC, which is capable of pre-

clinical to clinical translation. Where part of the model

were built and verified at each step to instill quality. In the

first step, the fate of the ADC was analyzed after incu-

bating with cancer cells in vitro, which would provide an

understanding of the PK of ADC at a cellular level mim-

icking the extracellular milieu of the tumor. The main goal

of the first step was to integrate different biomeasures of

ADC brentuximab-vedotin (e.g. internalization rate of

brentuximab-vedotin, CD30 receptor number per cell, exit

rate of MMAE from the cell, binding affinity of brentux-

imab-vedotin for CD30) using a simple mathematical

model to evaluate how well one can predict the fate of

brentuximab-vedotin at the cellular level a priori, using just

published values of biomeasures, without estimating any

parameters by fitting. Figure 2 demonstrates that it may be

possible to predict intracellular and extracellular concen-

trations of payload using a mathematical model, provided

the necessary biomeasure information is available in a

quantitative format. It is also important to note that the

intracellular concentrations of payload (MMAE) were

found to be more than 100 times higher that the concen-

tration of total payload in media, suggesting one should be

cautious in correlating cell culture viability data with

media payload concentration to assign IC50 values. The

media concentration may not accurately reflect the payload

concentration inside the cell necessary to induce cytotox-

icity, so we recommend that for ADCs, cell culture via-

bility data should be correlated with intracellular payload

concentrations.

Fig. 4 Characterization of

tumor growth inhibition (TGI)

data with the PK/PD Model.

a TGI data obtained from

various publications, after

injecting diverse doses of

brentuximab-vedotin into the

L540cy xenograft tumor bearing

mouse, were simultaneously

characterized using the PK/PD

model. The symbols represent

observed data and the solid lines
represent model fittings. b TGI

data obtained from various

publications, after injecting

diverse doses of brentuximab-

vedotin into the Karpas

xenograft tumor bearing mouse,

were simultaneously

characterized using the PK/PD

model. The symbols represent

observed data and the solid lines
represent model fittings
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In order to estimate the PK parameters for the payload,

the second step evaluated plasma and tumor PK of MMAE

in tumor bearing mice, after injecting MMAE. As shown in

Fig. 3a and b, being a small molecule the payload had a

very fast clearance from the plasma; however it lingered in

the tumor for a very long time. Considering the PK model

accounts for the slower diffusion process of payload

between plasma and tumor, the results suggest binding of

MMAE in the tumor compartment, leading to a longer

tissue half-life. As plasma ADC concentrations are the

main driving force for the concentrations of ADC in tumor,

the third step estimated parameters for the plasma PK of

brentuximab-vedotin, which was well characterized by a

simple two compartment model. The third step also eval-

uated stability of the payload on the ADC by estimating

how fast the payload is dissociating from the ADC, pro-

viding an accurate determination of the DAR for ADCs

that would internalize into cancer cells.

One of the main hurdles for developing a clinically

translatable tumor disposition model is the lack of mech-

anistic and reliable drug exchange parameters between

plasma and tumor compartments, which are mainly esti-

mated based on preclinical data. To overcome this problem

we have adapted a novel tumor disposition model from the

field of biomedical engineering [10–12], which is capable

of predicting tumor concentrations of various size mole-

cules in large vascularized tumors, as well as avascular

micrometastases. In order to evaluate the tumor disposition

model developed specifically for ADCs (Fig. 1), in step-4,

all the available parameter values for brentuximab-vedotin

and MMAE (from steps 1–3) were incorporated into the

model and its predictive ability was assessed. As shown in

Fig. 3d the model was able to predict the tumor MMAE

concentrations and also the plasma concentrations of

MMAE remarkably well, using parameters from sub-

models developed in previous steps. Subsequently, in step-5,

Fig. 5 Characterizing clinical PK of brentuximab-vedotin and

MMAE. Plasma PK of brentuximab-vedotin and MMAE, obtained

from patients belonging to two different clinical trials with different

dosing regimen, were fitted simultaneously to estimate the clinical PK

parameters for brentuximab-vedotin and MMAE. The solid line

represents model fitted brentuximab-vedotin concentrations, and the

dotted line represents model fitted MMAE concentrations. The solid
circles represent clinically observed brentuximab-vedotin concentra-

tions, and the open circles represent clinically observed MMAE

concentrations
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the validated tumor disposition model was combined with a

semi-mechanistic PD model, in which tumor payload

concentrations were used to drive efficacy. A unique fea-

ture of the proposed PK/PD model is the dynamic inter-

action incorporated between tumor distribution parameters

and tumor size, where changes in tumor volume are

directly able to influence the concentration of payload in

tumor, which in turn is responsible for the size of the

tumor. As shown in Fig. 4, the PK/PD model was able to

characterize brentuximab-vedotin preclinical TGI data

from various publications reasonably well, providing esti-

mates of the efficacy parameters and the inter-individual

variability associated with them.

The next step in the process was to translate/humanize the

preclinical PK/PD parameters, while keeping the model

structure the same, to predict clinical efficacy of brentux-

imab-vedotin. To accomplish that, in step-6, the clinical PK

parameters for brentuximab-vedotin and MMAE were esti-

mated. The dissociation rate of payload from ADC in human

was assumed to be similar to the monkey [5]. Since the

parameters for tumor disposition are clinically translatable,

they were kept the same. For translating, PD parameters were

divided into system specific (e.g. growth rates) and drug

specific (e.g. IC50) parameters, and only system specific

parameters were changed to match Hodgkin’s lymphoma.

The initial tumor diameter was chosen to be 2 cm and the

highest possible tumor diameter was chosen to be 10 cm.

Based on literature [22], the growth rates were adjusted so

that the exponential growth doubling time was 20 days and

the linear growth doubling time ranged from 20 to 140 days.

In step-7, two different clinical trials employing different

dosing regimens were simulated using a parametric simu-

lation method, results from which are provided in Fig. 6. It

was very interesting to observe that, for both the trials, pre-

dicted PFS were superimposable on the observed values. In

addition, the predicted CR versus Dose profiles were also

comparable for both trials. Of note, the observed percentage

of patients with CR for the 0.8 and 1.0 mg/kg doses from QW

study were higher than the simulated values (Fig. 6F). This

could be because only those two doses had highest number of

(50 %) patients with ALCL [20], which is much more

responsive than HL after brentuximab-vedotin treatment.

Thus, the simulations performed based on parameters for

HL, predicted lower percentage of patients with CR

Fig. 6 Comparison of clinical trial simulations with the results from

clinical trials. a The solid black line represents progression free

survival rates simulated after dosing brentuximab-vedotin once every

3 weeks (Q3W) for seven cycles (0.1–2.7 mg/kg) in Hodgkin’s

Lymphoma patients, and the grey line represents progression free

survival rates observed in patients who were administered brentux-

imab-vedotin with the same doses and dosing regimen. b Simulated

percentage of patients receiving certain response at the end of the

study (i.e. progressive, stable disease (SD), partial regression (PR), or

complete regression (CR)) vs. dose profiles for the Q3W clinical trial

simulations. c Comparison of the simulated (solid circles) and

observed (open circles) %CR versus dose profiles generated for the

Q3W trial. d The solid black line represents progression free survival

rates simulated after dosing brentuximab-vedotin once a week for

3 weeks followed by a gap for 1 week (QW) for two cycles

(0.4–1.4 mg/kg) in Hodgkin’s Lymphoma patients, and the grey line
represents progression free survival rates observed in patients who

were administered brentuximab-vedotin with the same doses and

dosing regimen. e Simulated percentage of patients receiving certain

response at the end of the study (i.e. progressive, SD, PR, or CR)

versus dose profiles for the QW clinical trial simulations. f Compar-

ison of the simulated (solid circles) and observed (open circles) %CR

versus dose profiles generated for the QW trial
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compared to the observation. As such, aforementioned

results suggest that a mechanistic mathematical model may

be able to predict clinical efficacy of ADCs, provided a

correct set of parameters and appropriate translation strategy

are chosen.

Of note, the seven step procedure mentioned here pro-

vides a framework for using the platform model, which

should be followed while keeping in mind the cancer being

targeted and the combination of antibody-linker-payload

being developed. For example, since MMAE demonstrates

bystander effects [8], the entire tumor concentrations were

used to drive efficacy. However, in the absence of bystander

effects, one might want to correlate the intracellular payload

concentration to efficacy. If one has a payload that is non-

permeable, characterization of its PK (step-2) may not be

necessary for efficacy. In the case of brentuximab-vedotin

clinical translation, the value of the killing rate constant

(kkillMax
) was kept the same as estimated in preclinical

experiments. However, if one has a means to determine the

direction and extent of change in kkillMax
needed for a proper

clinical translation of efficacy, based on the clinical tumor

growth parameters, it should be incorporated.

Apart from a quantitative tool for preclinical to clinical

translation of ADC efficacy, the PK/PD model presented

here has many other implications. The model can be used to

characterize in a mechanistic way the time dependent

development of clinical resistance to ADCs due to over

expression of efflux transporters by changing the drug efflux

rate (kout_PL) over the period of time. Of note, based on the

sensitivity analysis of the model (unpublished data) authors

hypothesize kout_PL as one of the very important parameters;

we believe whose importance is probably often undervalued

by the ADC community. Assuming similar internalization

rates for an ADC, different payload exit rates from the cell

can produce significantly different intracellular payload

concentrations, leading to huge differences in the efficacy

one may see for a given ADC. The model is also very

valuable in determining the number of receptors per cell

needed to achieve a certain intracellular payload concen-

trations, paving a way for precision/personalized medicine

scientists to stratify patients based on certain threshold

receptor numbers. One can develop a similar model to cor-

relate toxicity of the ADCs with ADC or payload concen-

trations, providing a more stringent tool for the prediction of

overall benefit to risk ratio of ADCs in the clinic.

The presented model is more mechanistic and tailored

towards ADCs compared to other published TGI PK/PD

models [7, 17, 31, 32]. It is a first of its kind model that

characterizes the disposition of antibody and payload sep-

arately, and considers changes in DAR over the period of

time by accounting for loss/shedding of payload routinely

observed in the experiential setting. The model is also

designed to gain an integrated understanding of the fun-

damental PK/PD principles of exposure at the site of

action, target binding, and expression of functional phar-

macological activity; termed together as the ‘three Pillars

of survival’ [33]. Where the Pillar-1 deals with the fun-

damental principle that the drug exposure at the target site

of action is necessary to elicit a pharmacological effect

over a desired time period. Pillar-2 deals with the funda-

mental principle that target occupancy is a prerequisite for

expression of pharmacology and target modulation. And,

Pillar-3 deals with the fundamental principle that func-

tional modulation of the target is a prerequisite for

expression of pharmacological activity to test the mecha-

nism of action [33]. Rather than using plasma ADC con-

centration to drive the efficacy, the model attempts to

characterize the drug exposure at the target site of action

(i.e. Pillar-1 for drug development) [33], and uses tumor

payload concentration to drive the efficacy. However, there

are still some empirical components in the model. And, to

develop a truly mechanistic model to address the Pillar-2

(i.e. binding to the pharmacological target) and Pillar-3 (i.e.

expression of pharmacology) of drug development [33],

moving forward we intend to elaborate on the presented

mechanistic model. We plan to expand the model to be able

to incorporate different cell population in the tumor, by

incorporating the details similar to the one presented in the

cellular-level kinetic model developed by Krippendorff

et al. [34]. Currently it is assumed that once internalized

each molecule of ADC will release DAR number of pay-

loads instantaneously, however it is well known that

depending on the nature of the linker, the intracellular

site and time taken for the payload release may vary. In

addition, the contribution of endosomal and lysosomal

processing in the intracellular payload release is also well

appreciated; however a quantitative understanding of these

phenomena (especially related to ADC) is scarce. We

intend to perform further intracellular trafficking studies to

better understand the intracellular fate of ADC and pay-

load, and to obtain relevant parameters, for incorporation

into the model. Moreover, we plan to incorporate the

intracellular pharmacological interaction between the drug

(i.e. released payload) and the target (e.g. microtubulin) to

better characterize the Pillar-2.

When it comes to characterizing the PD effect of anti-

cancer drugs most of the available models [7, 17, 31, 32],

including the one presented, employ some combination of

growth, kill, and transduction sub-models. To develop a more

mechanistic model, and integrate cellular biomarkers into the

model to address Pillar-3, use of a ‘mechanism of action’

specific cell cycle model to characterize the PD effect of

ADCs is envisioned. We believe that this enhanced mecha-

nistic PD model will not only increase the confidence in drug
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development and preclinical-to-clinical translation, but will

also help achieve an in vitro in vivo correlation (IVIVC) for

ADCs. We have performed kinetic in vitro cell culture

experiments (data not published) to analyze the effect of ADC

on cell viability and different cellular level biomarkers. Such

studies provide information to estimate relevant system and

drug specific parameter which can then be incorporated into

the PK/PD model to achieve consensus between the in vitro

and in vivo system. Of note, the implementation of afore-

mentioned kinetic in vitro experiment and characterization of

the data from this experiment may be a much better way of

screening/differentiate ADCs at the drug discovery stage

compared to the routinely used single time point analysis [31,

35], with the potential of using the in vitro data to establish an

IVIVC.

In summary, a mechanistic multi-scale PK/PD platform

model has been developed for ADCs, along with a

framework for preclinical to clinical translation of their

efficacy. The model was successfully able to predict clin-

ical responses for brentuximab-vedotin. Although the pro-

posed model holds promise, a thorough retrospective and

prospective evaluation of its ability to predict clinical

efficacy of ADCs, based on preclinical data, is warranted.
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